高,让能量损失进一步降低。
他发现不论是ITIC还是IDIC,中央D单元都是IDTT单元,为了保证分子的溶解度,引入侧链的方式是通过sp3杂化的碳原子。
而sp3杂化的碳原子,类似于甲烷的结构,在空间中会伸出两个支链,和中央D单元共轭结构呈现大约为109度28分的二面角。
也就是说,两个引入的侧链和中央D单元共轭结构不共平面。
在这种情况下,即使是IDIC这样具有烷基支链的分子,当两个IDIC分子在垂直方向上进行堆砌时,其实也是会形成较大的位阻,只是相较于ITIC的位阻更小一些罢了。
但不管怎么说,受体分子中的侧链还是得要的,不然材料都溶解不了,自然也无从用溶液法制备电池器件。
想要解决这个问题,许秋暂时想到了两种方法,主要思路是变换引入侧链的方法。
一种方法,是利用氮原子引入侧链,同为sp3杂化的氮原子,因为孤对电子的存在,只有单根侧链,可以一定程度的降低位阻。
另一种方法,是利用sp2杂化的碳原子,也即苯环或噻吩环上的碳原子,这种情况下的碳原子,同样只有单根侧链,而且因为是sp2杂化,侧链是和中央D单元共轭结构共平面的,也可以大幅度降低位阻。
不过,如果采用这两种策略的话,算是对D单元进行大幅度的改变,原先IDT、IDTT的合成思路肯定是没法用了,合成难度会大幅度增加,又是全新的结构,需要大量的摸索。
许秋打算把这个初步的想法暂时交给模拟实验室III,让高级实验人员帮忙摸索着。
算是走一步闲棋,如果有效果那自然最好,就算没有效果,也无妨。
等眼下ITIC系列的这些工作完成后,他再投入精力攻关就是了。
除了这种大幅度对分子结构进行改性的手段,许秋还有另外一种可行的策略,有望实现器件效率的突破。
那就是制备叠层太阳能电池器件。
所谓叠层器件,顾名思义,就是多个电池串联,“叠”在一起。
平常许秋制备的器件都是单结的,也就是一个电池,如果忽略传输层,那么结构就是电极/有效层/电极。
要是双结叠层电池器件,分为双终端结构和四终端结构,双终端结构就是电极/有效层1/电极(电荷复合层)/有效层2/电极,四终端结构就是两个“电极/有效层/电极”
他发现不论是ITIC还是IDIC,中央D单元都是IDTT单元,为了保证分子的溶解度,引入侧链的方式是通过sp3杂化的碳原子。
而sp3杂化的碳原子,类似于甲烷的结构,在空间中会伸出两个支链,和中央D单元共轭结构呈现大约为109度28分的二面角。
也就是说,两个引入的侧链和中央D单元共轭结构不共平面。
在这种情况下,即使是IDIC这样具有烷基支链的分子,当两个IDIC分子在垂直方向上进行堆砌时,其实也是会形成较大的位阻,只是相较于ITIC的位阻更小一些罢了。
但不管怎么说,受体分子中的侧链还是得要的,不然材料都溶解不了,自然也无从用溶液法制备电池器件。
想要解决这个问题,许秋暂时想到了两种方法,主要思路是变换引入侧链的方法。
一种方法,是利用氮原子引入侧链,同为sp3杂化的氮原子,因为孤对电子的存在,只有单根侧链,可以一定程度的降低位阻。
另一种方法,是利用sp2杂化的碳原子,也即苯环或噻吩环上的碳原子,这种情况下的碳原子,同样只有单根侧链,而且因为是sp2杂化,侧链是和中央D单元共轭结构共平面的,也可以大幅度降低位阻。
不过,如果采用这两种策略的话,算是对D单元进行大幅度的改变,原先IDT、IDTT的合成思路肯定是没法用了,合成难度会大幅度增加,又是全新的结构,需要大量的摸索。
许秋打算把这个初步的想法暂时交给模拟实验室III,让高级实验人员帮忙摸索着。
算是走一步闲棋,如果有效果那自然最好,就算没有效果,也无妨。
等眼下ITIC系列的这些工作完成后,他再投入精力攻关就是了。
除了这种大幅度对分子结构进行改性的手段,许秋还有另外一种可行的策略,有望实现器件效率的突破。
那就是制备叠层太阳能电池器件。
所谓叠层器件,顾名思义,就是多个电池串联,“叠”在一起。
平常许秋制备的器件都是单结的,也就是一个电池,如果忽略传输层,那么结构就是电极/有效层/电极。
要是双结叠层电池器件,分为双终端结构和四终端结构,双终端结构就是电极/有效层1/电极(电荷复合层)/有效层2/电极,四终端结构就是两个“电极/有效层/电极”
本章未完,请点击下一页继续阅读》》