结构。
那么材料方面可以进行优化的部分,就只剩下底电池的J4:PCBM:IDIC-4F体系。
这个体系作为底电池的光吸收范围,大约在300-700纳米,而作为顶电池的PCE10:IEICO-4F体系,光吸收范围大约在600-1000纳米。
两者在600-700纳米处的光吸收是重合的,重合程度大约有100纳米,这个范围还是稍微有些大的。
因此,许秋计划把底电池中的IDIC-4F给替换掉,以期让底电池的光吸收范围向短波长移动(蓝移),从而使得顶电池和底电池两者之间重合波长范围变小一些,给顶电池多留一些光。
不过,考虑到IDIC这个体系本身还是不错的,可以制备厚膜器件,便于调控底电池的电流,许秋并不打算放弃使用IDIC系列。
于是,他决定采用IDIC的另外一个衍生物IDIC-M,来代替IDIC-4F。
相较于IDIC-4F,IDIC-M体系的光电性能虽然略微降低,但也可以保持在12%、13%这个档次。
最重要的是,IDIC-M体系的光吸收范围,相较于IDIC-4F发生了一定程度的蓝移。
这主要是因为IDIC-4F和IDIC-M端基的不同所造成的,前者的端基ICIN-2F,引入的氟原子是吸电子的,而后者的端基ICIN-M是给电子的。
如果选择IDIC-M体系,底电池的光吸收范围就可以控制在大约300-650纳米,它和顶电池PCE10:IEICO-4F体系的光吸收范围重叠范围就只有600-650纳米,也就是重合程度只有50纳米左右。
重合程度从100纳米下降到50纳米,反应在器件的短路电流密度上,差不多会偏差1-2个毫安每平方厘米,可以为顶电池的优化留下不少空间。
同时,重合程度只改变50纳米,这个幅度也刚刚好。
因为原先IDIC-4F体系的表现并不差,效率可以做到15%以上,现在是在精益求精,选择小幅度的变化,慢慢调节会比较好,如果变化的幅度太大,反而可能“优化”的过了,造成器件性能急剧的下降。
这个想法许秋刚想出来没多久,模拟实验室那边已经开始同步进行摸索,但还没有出来结果。
于是,他便在现实中进行同步的实验,也不能凡事都依靠模拟实验系统,因为很多实验灵感都是在实验
那么材料方面可以进行优化的部分,就只剩下底电池的J4:PCBM:IDIC-4F体系。
这个体系作为底电池的光吸收范围,大约在300-700纳米,而作为顶电池的PCE10:IEICO-4F体系,光吸收范围大约在600-1000纳米。
两者在600-700纳米处的光吸收是重合的,重合程度大约有100纳米,这个范围还是稍微有些大的。
因此,许秋计划把底电池中的IDIC-4F给替换掉,以期让底电池的光吸收范围向短波长移动(蓝移),从而使得顶电池和底电池两者之间重合波长范围变小一些,给顶电池多留一些光。
不过,考虑到IDIC这个体系本身还是不错的,可以制备厚膜器件,便于调控底电池的电流,许秋并不打算放弃使用IDIC系列。
于是,他决定采用IDIC的另外一个衍生物IDIC-M,来代替IDIC-4F。
相较于IDIC-4F,IDIC-M体系的光电性能虽然略微降低,但也可以保持在12%、13%这个档次。
最重要的是,IDIC-M体系的光吸收范围,相较于IDIC-4F发生了一定程度的蓝移。
这主要是因为IDIC-4F和IDIC-M端基的不同所造成的,前者的端基ICIN-2F,引入的氟原子是吸电子的,而后者的端基ICIN-M是给电子的。
如果选择IDIC-M体系,底电池的光吸收范围就可以控制在大约300-650纳米,它和顶电池PCE10:IEICO-4F体系的光吸收范围重叠范围就只有600-650纳米,也就是重合程度只有50纳米左右。
重合程度从100纳米下降到50纳米,反应在器件的短路电流密度上,差不多会偏差1-2个毫安每平方厘米,可以为顶电池的优化留下不少空间。
同时,重合程度只改变50纳米,这个幅度也刚刚好。
因为原先IDIC-4F体系的表现并不差,效率可以做到15%以上,现在是在精益求精,选择小幅度的变化,慢慢调节会比较好,如果变化的幅度太大,反而可能“优化”的过了,造成器件性能急剧的下降。
这个想法许秋刚想出来没多久,模拟实验室那边已经开始同步进行摸索,但还没有出来结果。
于是,他便在现实中进行同步的实验,也不能凡事都依靠模拟实验系统,因为很多实验灵感都是在实验
本章未完,请点击下一页继续阅读》》